<u>Coulomb's Law of Force</u>

Consider **two** point charges, Q_1 and Q_2 , located at positions $\overline{r_1}$ and $\overline{r_2}$, respectively.

We will find that **each** charge has a **force F** (with magnitude and direction) exerted on it.

This force is **dependent** on both the sign (+ or -) and the **magnitude** of charges Q_1 and Q_2 , as well as the **distance** R between the charges.

Charles Coulomb determined this relationship in the 18th century! We call his result **Coulomb's Law**:

$$\mathbf{F}_{1} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{1} Q_{2}}{R^{2}} \hat{a}_{21} [N]$$

This force F_1 is the force exerted on charge Q_1 . Likewise, the force exerted on charge Q_2 is equal to:

Jim Stiles

 \overline{r}_{2}

R

 $\overline{r_1}$

$$\mathbf{F}_{2} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{2} Q_{1}}{R^{2}} \hat{a}_{12} \quad [N]$$

In these formula, the value ε_0 is a constant that describes the permittivity of free space (i.e., a vacuum).

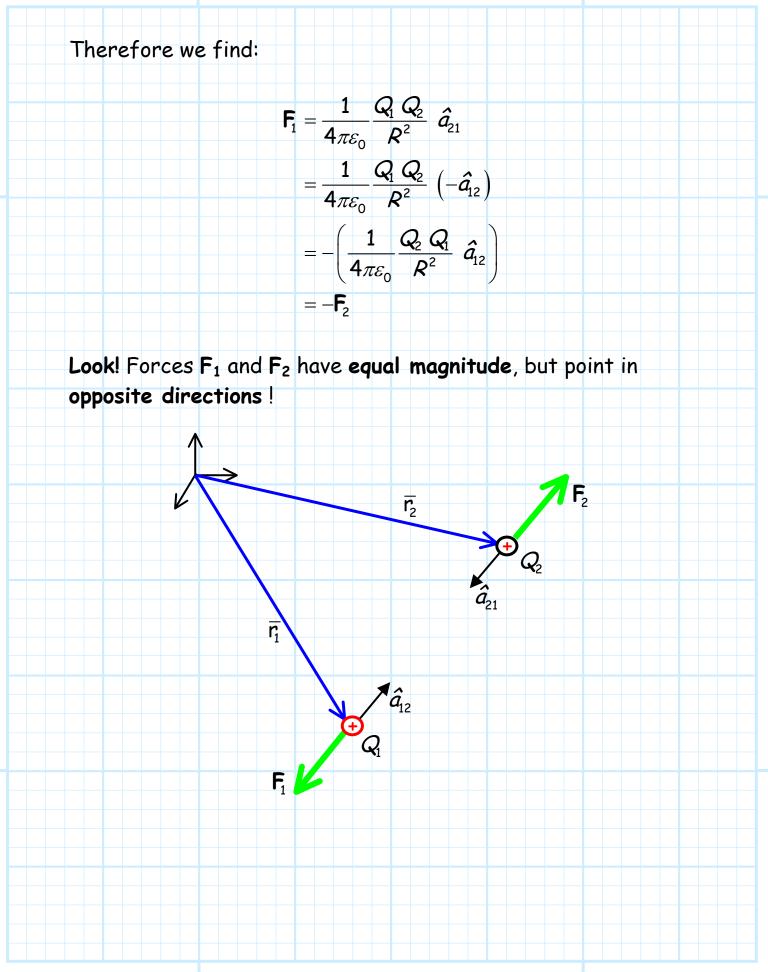
$$\varepsilon_{0} \doteq \mathsf{permittivity} \ \mathsf{of} \ \mathsf{free} \ \mathsf{space}$$

$$= 8.854 \times 10^{-12} \quad \left\lfloor \frac{C^2}{Nm^2} = \frac{farads}{m} \right\rfloor$$

Note the only difference between the equations for forces F_1 and F_2 are the unit vectors \hat{a}_{21} and \hat{a}_{12} .

- * Unit vector \hat{a}_{21} points **from** the location of Q_2 (i.e., $\overline{r_2}$) **to** the location of charge Q_1 (i.e., $\overline{r_1}$).
- * Likewise, unit vector \hat{a}_{12} points **from** the location of Q_1 (i.e., $\overline{r_1}$) **to** the location of charge Q_2 (i.e., $\overline{r_2}$).

Note therefore, that these unit vectors point in **opposite** directions, a result we express mathematically as $\hat{a}_{21} = -\hat{a}_{12}$.



Note in the case shown above, both charges were positive.

Q: What happens when **one** of the charges is **negative**?

A: Look at Coulomb's Law ! If one charge is positive, and the other is negative, then the **product** $Q_1 Q_2$ is **negative**. The resulting force vectors are therefore negative—they point in the **opposite** direction of the previous (i.e., both positive) case!

Therefore, we find that:

 F_1

 F_1

F₁

Jim Stiles

 F_2

F2

